
CDDV2022Low-Dose Rifabutin Triple Therapy (RHB-105) Demonstrates High Helicobacter pylori (H. pylori) Eradication Rates (Physiologically-Based Pharmacokinetic Modeling Supports Favorable Intragastric Rifabutin Concentrations for 50 mg Q8H Dosing vs 150 mg QD) Digestive Disease Week® C. W. Howden¹, S. Pendse², M. Bush², J. Almenoff³ and K. Sheldon³ ¹University of Tennessee College of Medicine, Memphis, TN MAY 21-24 SAN DIEGO, CA ²Nuventra Pharma Sciences, Durham, NC ³RedHill Biopharma, Medical Affairs, Raleigh, NC

INTRODUCTION

- H. pylori is the strongest risk factor for peptic ulcer disease and non-cardia gastric cancer, and is also associated with dyspepsia, iron deficiency anemia, and vitamin B12 deficiency.^{1,2,3,4}
- Achieving and maintaining adequate local gastric antibiotic concentrations (at or above the relevant MIC_{on} for *H. pylori*) are important for successful eradication.^{5,6}
- Variable eradication rates (~70%) have been reported when generic rifabutin (typically 150 mg QD or BID) was used as a component of *H. pylori* treatment.^{7,8}
- RHB-105 is formulated as an all-in-one combination of low-dose rifabutin 50 mg/amoxicillin 1000 mg/omeprazole 40 mg in 4 capsules to be given Q8H for 14 days, and was proven safe and efficacious in two Phase 3 trials (ERADICATE Hp [NCT01980095]; ERADICATE Hp2 [NCT03198507])^{9,10,11}
- Eradication rates in Phase 3 trials (Figure 1): ^{9,10,11} ERADICATE Hp: 89.4% for RHB-105 vs. 70% for literature-derived comparator rate (p<0.001) in the modified intent-to-treat patient population (mITT).^{a,b,c}
- ERADICATE Hp2: 84.1% for RHB-105 vs. 57.7% for amoxicillin 1000 mg and omeprazole 40 mg Q8H (p<0.001) for mITT analysis and 90.3% for confirmed adherent population vs 64% for the same comparator (p<0.001).

^aClarithromycin, amoxicillin, and proton pump inhibitor (omeprazole or lansoprazole), ^bMetronidazole, bismuth subcitrate potassium, and tetracycline. ^cBismuth subcitrate potassium, metronidazole, tetracycline, and omeprazole,

- Adherent Population, a subset of ITT patients who underwent ¹³C UBT and demonstrated presence of any component of study drug at end of treatment (day 13)

■ RHB-105 was generally well tolerated. Most frequently reported adverse events were diarrhea (10.1 – 14.3%), headache (7.5 – 15.6%), and nausea (3.9 – 4.8%).

DEMOGRAPHICS

ERADICATE Hp Study

The study was conducted between November 25, 2013 and August 24, 2015, and enrolled 118 subjects. Key demographics included mean age (46 \pm 10.18 years), female (62.7%), White (92.4%), and Black (7.6%); 80.5% were Hispanic/Latino.

ERADICATE Hp2 Study

The study was conducted between July 2017 and November 2018, and enrolled 445 subjects. Key demographics included mean age (45.9 \pm 12.77 years), female (62.2%), White (77.1%), and Black (19.3%); 60% were Hispanic/Latino.

OBJECTIVE

To use physiologically-based pharmacokinetic (PBPK) modeling to compare intragastric rifabutin concentrations when administered as 50 mg Q8H (the dose for RHB-105) and 150 mg QD.

METHODS

- Plasma pharmacokinetic (PK) data for rifabutin were obtained from the RHB-105 Phase 1 clinical development program for rifabutin 50mg Q8H (as RHB-105) and rifabutin 150 mg QD (co-administered with omeprazole and amoxicillin Q8H) and two Phase 3 RHB-105 studies.^{9,10}
- Key chemical and biological properties of the formulations were obtained from literature or calculated using quantitative structure-activity relationship models.

RESULTS

Pharmacokinetic Properties of RHB-105 from PBPK Modeling

Intragastric Rifabutin Concentrations Based on Dosing Regimen (Table 1, Figure 2)

- **Based on steady state simulations, time above MIC**_{an} (mean \pm SD) in the gastric lumen was approximately 3 times longer for rifabutin 50 mg Q8H than rifabutin 150 mg QD, irrespective of meal status:
- Without meals: rifabutin 50 mg Q8H achieved 2.73-times longer time above MIC_{00} in the gastric lumen vs. rifabutin 150 mg QD. With meals: rifabutin 50 mg Q8H achieved 2.68-times longer time above MIC_{00} in the gastric lumen vs. rifabutin 150 mg QD.

Plasma Rifabutin Concentrations Based on Dosing (Figure 3)

- Plasma rifabutin concentrations and AUC_{0-24} were similar between 50 mg Q8H and 150 mg QD.
- However, there were differences in peak plasma concentrations between dosing regimens. Rifabutin 150 mg QD yielded a single higher C_{max} (about 3-hrs after each dose) and the plasma concentrations declined rapidly.
- The rapid decline of plasma rifabutin concentration with 150 mg QD is consistent with the rapid decline of the intragastric rifabutin concentration during a 24-hr period at steady state.
- In contrast, rifabutin 50 mg Q8H yielded three consistent C_{max} values (about 3-hrs after each dose) and the plasma concentrations declined steadily.
- Consistent and sustained plasma rifabutin concentrations with 50 mg Q8H are similar to the increased time above MIC_{00} for intragastric rifabutin concentrations during a 24-hr period at steady state.
- Thus, rifabutin 50 mg Q8H provides optimal intragastric rifabutin concentrations compared with 150 mg QD.

<u>Table 1.</u> Predicted Intragastric Luminal Rifabutin Concentrations: Time Above MIC₆₀ During a 24-hr Period at Steady State with 50 mg Q8H vs. 150 mg QD in Subjects without Meals and with Meals (Cumulative Time Above MIC₀₀)*

REGIMENS PARAMETERS		Intragastric Rifabutin Concentration: Time Above MIC ₉₀	
		WITHOUT MEALS	WITH MEALS
Rifabutin 50 mg Q8H	Mean (SD), hr	10.85 (4.69)	22.25 (1.08)
	% Day	45.21	92.71
Rifabutin 150 mg QD	Mean (SD), hr	3.98 (2.68)	8.29 (1.67)
	% Day	16.6	34.54
Ratio of Intragastric Time Above MIC ₉₀ : Rifabutin 50 mg Q8H/ Rifabutin 150 mg QD		2.73	2.68

Note: SD, Standard Deviation *Represents Day 6

- The remaining parameters were estimated by fitting model predictions to a subset of the plasma PK data.
- The final parameterized PBPK model was validated against the plasma PK data not used for fitting.
- The final PBPK model was constructed to predict rifabutin concentrations in the gastric lumen that would be at or above the MIC_{on} for *H. pylori* during a 24-hour period at steady state based on rifabutin 50 mg Q8H and rifabutin 150 mg QD regimens.

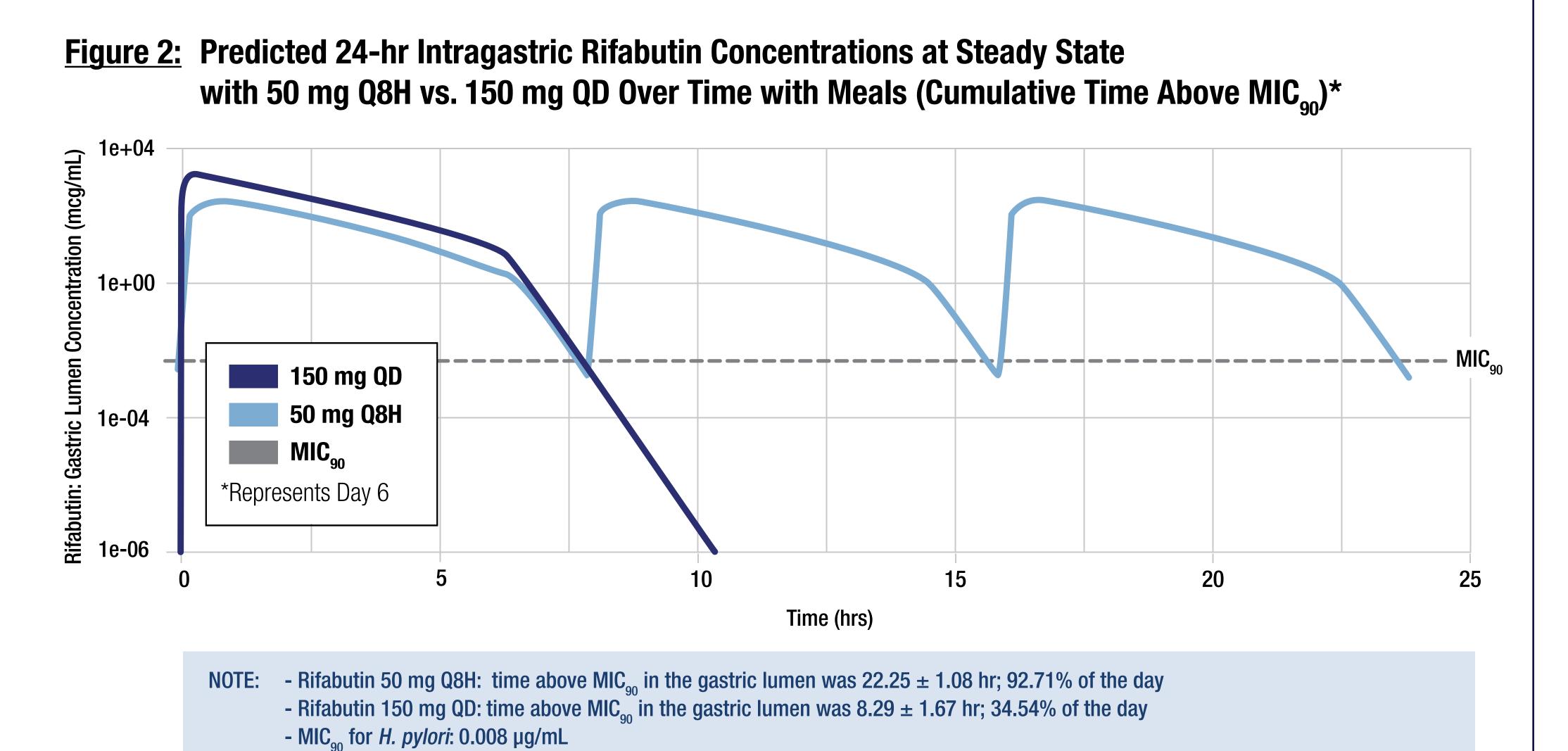
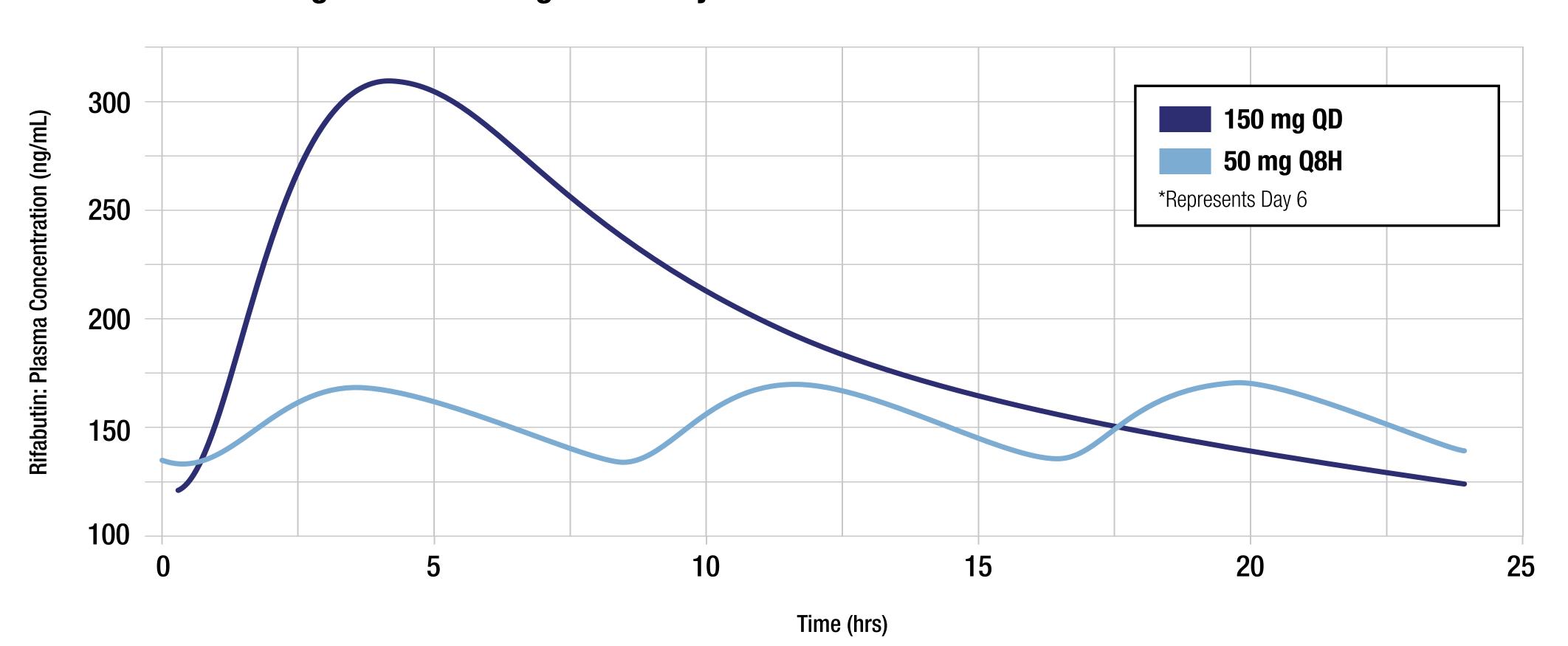



Figure 3. Predicted 24-hr Plasma Rifabutin Concentrations at Steady State

with 50 mg Q8H vs. 150 mg QD in Subjects with Meals*

Poster Number **Tu1077**

CONCLUSION

- Adequate intragastric antibiotic concentrations are imperative for eradication of H. pylori.
- Dosing rifabutin at 150 mg QD does not replicate the sustained intragastric concentrations predicted when dosing rifabutin at 50 mg Q8H.
- Low-dose rifabutin 50 mg Q8H (as in RHB-105) maintains intragastric concentrations at or above the MIC₉₀ nearly 3-fold longer than 150 mg QD irrespective of fasting or fed conditions.
- Approximately 93% of the day for RHB-105 vs. approximately 35% of the day for rifabutin 150 mg QD in the fed condition.
- This could explain the lower published eradication rates for QD dosing (~ 70%) than were seen in the clinical trials of RHB-105 with Q8H dosing (about 84% – 90%).
- There may be a link between sustained high intragastric rifabutin exposure and the high eradication rates seen with low-dose rifabutin 50 mg given Q8H (RHB-105).

REFERENCES

- . Adamu MA, et al. Incidence and risk factors for the development of chronic atrophic gastritis: five year follow-up of a population-based cohort study. Int J Cancer. 2011;128(7):1652-1658.
- 2. El-Serag HB, et al. Houston Consensus Conference on Testing for Helicobacter pylori Infection in the United States [published correction appears in Clin Gastroenterol Hepatol. 2019 Mar;17(4):801. Crowe, Sheila [corrected to Crowe, Sheila E]]. Clin Gastroenterol Hepatol. 2018;16(7):992-1002.e6.
- 3. Eslick GD, et al. Association of Helicobacter pylori infection with gastric carcinoma: a meta-analysis. Am J Gastroenterol. 1999;94(9):2373-2379.
- 4. Kato S, et al. Helicobacter pylori infection-negative gastric cancer in Japanese hospital patients: incidence and pathological characteristics. *Cancer Sci.* 2007:98(6):790794.
- 5. Kimura K, et al. A 1-h topical therapy for the treatment of Helicobacter pylori infection. Am J Gastroenterol. 1995;90(1):60-63.
- 6. Satoh K. Treatment of Helicobacter pylori infection by topical administration of antimicrobial agents. *Scand J Gastroenterol Suppl.* 1996;214:56-60.
- Gisbert JP. Rifabutin for the Treatment of Helicobacter Pylori Infection: A Review. *Pathogens*. 2020;10(1):15.
- 3. Gingold-Belfer, R., et al., Rifabutin triple therapy for first-line and rescue treatment of Helicobacter pylori infection: A systematic review and meta-analysis *J Gastroenterol Hepatol.* 2021:36(6):1392-1402.
- 9. Kalfus IN, et al. Rifabutin-Containing Triple Therapy (RHB-105) for Eradication of Helicobacter pylori: Randomized ERADICATE Hp Trial. Antibiotics (Basel). 2020:9(10):685.
- 10. Graham DY. et al. Rifabutin-Based Triple Therapy (RHB-105) for Helicobacter pylori Eradication: A Double-Blind, Randomized, Controlled Trial. Ann Intern Med. 2020;172(12):795-802.
- 11. Talicia. Prescribing Information. Raleigh, NC: RedHill Biopharma; Version 3/2022.

ACKNOWLEDGMENTS

Medical writing support was provided by Philip Yeung from Medical Affairs 360, LLC. (Carlsbad, CA, USA).

QR CODE

Please use the provided QR Code to the right, for the online version of this poster for more depth and insight into the study.

